Complex Geometry Exercises

Week 2

Exercise 1. Let (M, J) be an almost complex manifold.

- (i) Show that $\dim_{\mathbb{R}} M$ is even and M is naturally oriented.
- (ii) Show that there is at most one structure of a complex manifold inducing J.

Exercise 2. Show that the only compact connected complex submanifold in \mathbb{C}^n is a point.

Exercise 3. Show that any Hopf surface

$$H_{\lambda}^2 := \mathbb{C}^2 \setminus \{(0,0)\}/(z_1,z_2) \sim \lambda(z_1,z_2), \quad \lambda \in (0,1)$$

contains many elliptic curves.

Exercise 4. Let $f: \mathbb{CP}^n \to \mathbb{C}^m/\Lambda$ be a holomorphic map. Then f is constant. (*Hint*: think about how f interacts with the covering maps of the tours).

Exercise 5. Let (M, J) be an almost complex manifold and consider the associated ∂ and μ operators. Prove that they satisfy the following properties:

- (i) The Leibniz rule.
- (ii) ∂ is \mathbb{C} -linear and μ is function linear.
- (iii) The following identities hold:

$$\begin{split} \mu \partial + \partial \mu &= 0 \;, \qquad \partial^2 + \overline{\partial} \mu + \mu \overline{\partial} &= 0 \;, \\ \mu^2 &= 0 \;, \qquad \mu \overline{\mu} + \overline{\partial} \partial + \partial \overline{\partial} + \overline{\mu} \mu &= 0 \;. \end{split}$$

(continues on the back)

Exercise 6 (Serge and Plücker embeddings).

- (i) Show that there is a holomorphic embedding $\mathbb{CP}^n \times \mathbb{CP}^m \to \mathbb{CP}^{(n+1)(m+1)-1}$
- (ii) Write down the corresponding homogeneous equations in the case n = m = 1.
- (iii) Show that the map

$$Gr(k,n) \rightarrow \mathbb{P}(\Lambda^k \mathbb{C}^n)$$

 $W = \operatorname{span}\{w_1, \dots, w_k\} \mapsto [w_1 \wedge \dots \wedge w_k]$

is a holomorphic embedding.

(iv) Write down the corresponding homogeneous equations for the Grassmannian Gr(2,4).

Exercise 7. Let $B = B_r(0) \subseteq \mathbb{C}^n$ be a polydisc. Then, the cohomology groups $H_{BC}^{p,q}(B)$ and $H_A^{p,q}(B)$ vanish for p,q > 0.